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a b s t r a c t

Awareness of increasing water scarcity has driven efforts to model global water resources for improved
insight into water resources infrastructure and management strategies. Most water resources models
focus explicitly on water systems and represent socio-economic and environmental change as external
drivers. In contrast, the system dynamics-based integrated assessment model employed here, ANEMI,
incorporates dynamic representations of these systems, so that their broader changes affect and are
affected by water resources systems through feedbacks. Sectors in ANEMI therefore include the global cli-
mate system, carbon cycle, economy, population, land use and agriculture, and novel versions of the
hydrological cycle, global water use and water quality. Since the model focus is on their interconnections
through explicit nonlinear feedbacks, simulations with ANEMI provide insight into the nature and struc-
ture of connections between water resources and socio-economic and environmental change. Of partic-
ular interest to water resources researchers and modelers will be the simulated effects of a new water
stress definition that incorporates both water quality and water quantity effects into the measurement
of water scarcity. Five simulation runs demonstrate the value of wastewater treatment and reuse pro-
grams and the feedback-effects of irrigated agriculture and greater consumption of animal products.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Demand for fresh water is rising but a variety of factors includ-
ing population growth, water pollution, economic progress, land-
use change and climate change render its availability into the fu-
ture uncertain. Awareness of growing water scarcity has led to
increasing interest in global modeling of water resources [5], both
in terms of supply and demand, with the aim of developing and
implementing appropriate water resources infrastructure and
management strategies. Such planning requires accurate long-
term projections of water supply and demand, but these projec-
tions are generally flawed [46] because of inaccuracies in assump-
tions about, and incomplete understanding of, the driving forces
behind domestic, industrial and agricultural water use. Uncertain-
ties surrounding climate change only compound the problem.

Many global water resources models focus exclusively on
water-related processes and therefore incorporate socio-economic
and broader environmental changes as scenarios, or external driv-
ers. However, interactions between physical processes, biological

and biochemical processes, and human-mediated processes are
key in determining changes in the global water system
[4,109,47]. The main advantage of the approach presented in this
paper is therefore the explicit incorporation in an integrated
assessment model (IA model) of important hydrological sectors
and their socio-economic and natural context. The model, ANEMI
[27–29], allows an investigation of the broader feedback-effects
of various water resources policies, including those related to
wastewater treatment and reuse, and the expansion of irrigated
agriculture and changes in the human diet, on the society-bio-
sphere-climate system as a whole. ANEMI provides insight into
the behavior of the modeled system: although simulation models
can serve as predictive tools, their more important role, as investi-
gated in this and other IA work, relates to learning. They make
assumptions about real-world processes and characteristics expli-
cit and therefore offer an opportunity to improve our understand-
ing – and our management – of the modeled system.

The paper begins with an introduction to water resources and
integrated assessment, followed by a description of ANEMI. The
next section summarizes experimentation undertaken to date
and then describes and analyzes three water resources policies
through feedback analysis. The paper concludes with a discussion
of the role different feedbacks play in determining the simulated
behavior of the model and of the implications of the experimental
results for real-world water resources management.
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2. Water resources and integrated assessment

Integrated assessment (IA) focuses on feedbacks between com-
ponents of a larger system. IA has three aims: (1) to evaluate the
broad consequences of and responses to climate and global change,
(2) to structure knowledge and characterize uncertainty and (3) to
place climate change in the context of other environmental, social
and economic changes that might occur over the same time [76].
Rather than answering specific questions, IA provides ‘‘insight
[into] the nature and structure of the problem, what matters, and
what we still need to learn’’ [76]. Importantly, integrated assess-
ment seeks to inform policy-making [103].

Historically, integrated assessment has focused less on the spe-
cific details of component parts of the system and more on their
interconnections through feedbacks. As analytical tools, IA models
’’assemble information that is being created at the various disci-
plinary frontiers, so as to uncover and quantify implications and
feedbacks that might otherwise go unappreciated’’ in a program
of disciplinary research [34, p. 297]. They allow an exploration of
the interactions and feedbacks between subsystems, provide flex-
ible and fast simulation tools, structure present knowledge and
identify and rank major uncertainties, and supply tools for commu-
nication between scientists, the public, and policy makers [88].

In the context of water resources, a variety of model types at riv-
er-basin to global scales include hydrologically-relevant variables –
global-scale hydrological, vegetation, agricultural, climate and inte-
grated assessment models are discussed first. Global hydrological
models are a relatively new development, and result from the same
sorts of global change questions that drive integrated assessments.
Arnell [10], Vörösmarty et al. [108], Alcamo et al. [5] and Hanasaki
et al. [49] produced high-resolution models called, respectively,
Macro-PDM, the water balance model (WBM), WaterGAP2 and
H08, each of which resolves individual river basins. In addition to
hydrological variables, WBM, WaterGAP2 and H08 included both
the anthropogenic drivers that change water-use patterns and their
quantitative effects on surface water resources. Also at the global
scale, Rost et al. [86] developed a dynamic vegetation and water
balance model, LPJmL, to simulate the establishment and behavior
of natural and agricultural systems and their associated carbon and
water fluxes, while Cai and Rosegrant [20] described a basin-scale
model, IMPACT-WATER (since updated and called WATERSIM
[30], for forecasting domestic, livestock, industrial and irrigation
water use and supply in 69 basins to 2025. Siebert and Döll [92]
developed a high-resolution model for global agriculture, GCWM,
and used it to simulate both irrigated and rain-fed water use under
1998–2002 climatic conditions for 26 different crop classes. How-
ever, these models focused exclusively on water resources prob-
lems and so used prescribed scenarios for key socio-economic
variables – for example, Arnell [12] and Alcamo et al. [7] used pop-
ulation, and population and economic growth values, respectively,
from the IPCC SRES scenarios [71] as well as GCM-based climate
change projections to simulate domestic, industrial and agricultural
water use volumes at the river-basin scale into the 2070s and
2080s. Shen et al. [90] used SRES scenario population and economic
growth values and GCM-based climate projections to simulate
water use values at national levels to 2075. Other models, like
GCMs and Regional Climate Models (RCMs), typically include sim-
ple representations of land-surface hydrological processes but omit
water withdrawals and other socio-economic factors – see, for
example, Arora and Boer [13], Manabe et al. [67] and Betts et al.
[17]. A few IA models, such as TARGETS [87] and WorldWater
[94], have included water resources as one of their many compo-
nents but the majority have omitted water-related variables.

At the river-basin scale, a variety of numerical water manage-
ment models has been developed to explore feedbacks between

society and water resources systems. Like the global models, these
basin-scale models have focused either on connections between
water quantity and quality, or water availability and water use.
Many such models have dealt with water resources systems pri-
marily from a natural sciences perspective: Xu et al. [114], Tidwell
et al. [102], Langsdale et al. [61], Madani and Marino [64], Williams
et al. [110], Bagheri et al. [14] and Prodanovic and Simonovic [80]
linked hydrological and water use models, while Paredes-Arquiola
et al. [75] and Zhang et al. [115] recently combined water quantity
and quality models. The first group of models simulated feedbacks
between water use – based on assumed population growth trends
– and water availability. Xu et al. [114] forecasted annual water de-
mands and the likelihood of water scarcity to 2030 in the Yellow
River basin, China, for a variety of water demand and supply op-
tions. Tidwell et al. [102] developed an annual-scale model of the
Middle Rio Grande basin, USA, for community-based water re-
sources planning. Langsdale et al. [61] connected river flows from
climate and hydrological models with dynamic, monthly water de-
mands in the Okanagan basin, Canada. Madani and Marino [64]
investigated the effects of current water management policies,
population growth and climate change in the Zayandeh-Rud basin,
Iran, on the environmentally-sensitive Gav-Khuni Swamp. Wil-
liams et al. [110] developed an educational model at a yearly scale
that connects historical flows in several of Arizona’s rivers with dy-
namic water use models to evaluate policies for greater water-use
efficiency. Bagheri et al. [14] evaluated the effects of post-disaster
water provision policies in Bam, Iran, on water availability through
a ‘‘system crisis index’’ similar to the ‘‘water resources vulnerabil-
ity index’’ discussed in Section 3.3.2. Prodanovic and Simonovic
[80] studied possible effects of hydrological extremes in the Upper
Thames River basin, Canada, with a coupled hydrological and so-
cio-economic model at the sub-daily to monthly scale. Unusually,
three urban- to basin-scale models – those of Madani and Marino
[64], Bagheri et al. [14], and Prodanovic and Simonovic [80] – sim-
ulated explicit feedbacks between variables related to population,
the local economy and water resources. In these models, popula-
tion change was represented either as a function of water availabil-
ity and economic welfare [64,14], or water, employment and
housing availability [80]. Dynamic feedbacks then caused popula-
tion changes to affect local water resources in turn. Omitting dy-
namic socio-economic models, the second group of natural-
sciences models focused on connections between water use and
quality, and projected socio-economic behavior exogenously from
historical trends. The nonlinear optimization model that Paredes-
Arquiola et al. [75] developed for the Jucar basin, Spain, simulated
a wide variety of water quantity and quality variables realistically
at a monthly scale in a large, heavily-used semi-arid basin. A sec-
ond nonlinear optimization model developed by Zhang et al.
[115] for the Jiaojiang basin, China, focused on wastewater treat-
ment, included both quantity and quality variables and ran at a
daily scale.

As opposed to these natural sciences-based models, other stud-
ies at the river-basin scale have investigated water supply and de-
mand feedbacks from an economic perspective. These models,
however, generally omit water quality, and use scenarios of cli-
mate, hydrological and population change. Fernandez and Selma
[38] developed an irrigation model using the system dynamics
methodology for the Segura basin, Spain, that simulates feedbacks
between agricultural cropland expansion, profitability, water avail-
ability and water quality (salinity). Hurd et al. [55] used nonlinear
optimization allocation and impact models (Water-AIM) in four
representative US watersheds to estimate national-level economic
impacts of climate change on water resources. Tanaka et al. [99]
developed an economic optimization model that minimizes oper-
ating and scarcity costs for water supply in California and used
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two climate change-based hydrological scenarios to project water
demand to 2100. Iglesias and Blanco [56] developed a nonlinear
optimization model for Spain, applied to four basins, and deter-
mined irrigation technology sensitivity to water price – higher
prices led to less water consumption and lower farm income
through the adoption of more efficient technologies and, increas-
ingly, of dryland farming.

3. Model description: ANEMI

ANEMI represents an attempt to model nonlinear feedbacks be-
tween water resources and socio-economic and environmental
systems both explicitly and dynamically. Therefore, changes in var-
iable values in each of nine – climate, carbon cycle, economy, land-
use, agriculture, population, natural hydrological cycle, water use
and water quality – linked system dynamics models [81,97,95] af-
fect model variables in other sectors at each time step from 1960 to
2100. ANEMI is described in detail in Davies and Simonovic [29];
however, a brief comparison of the model with other similar mod-
els and a description of its capabilities and limitations, a summary
of the methodology and model structure, and a description of re-
cent updates follow.

3.1. Description of ANEMI and comparison with other models

In integrated assessment terms, ANEMI is horizontally-inte-
grated and links climate change, water resources and other physi-
cal and socio-economic issues ‘‘to sketch an integrated conception
of sustainable development’’ [76, p. 594]. It is intended for policy
evaluation, or for answering ‘‘what if?’’ questions [103], rather
than for policy optimization. Because of a focus on broad socio-
economic and environmental feedbacks, model development fol-
lowed a ‘‘downward approach’’ [96] toward system modeling: we
explored first-order controls, or key processes, in representing
real-world behaviors and then expanded the model step-wise to
improve its ability to reproduce observations. Thus, ANEMI repro-
duces the major structural attributes of its eight key components at
a global-aggregate level and links them together to represent the
larger society-biosphere-climate system at an annual scale [27–
29]. Unlike models programmed in structural languages, ‘‘high-le-
vel simultaneities’’ – in which the avoidance of circular references
means that a set of variables must be pre-set and other variable
values calculated hierarchically from those set values – do not pose
a problem for the ANEMI model. Circular references, or ‘‘feed-
backs’’, are the main focus of system dynamics modeling. Further,
many feedbacks that are treated as external quantities by either
natural science- or economically-based models, such as economic
output and industrial emissions for natural sciences-based models,
climate change and the carbon cycle for economic models and pop-
ulation growth for both model types, are modeled explicitly in AN-
EMI. Of particular interest are the water use and water quality
sectors, which are strongly linked to the behavior of the other
model sectors.

As described in detail in Davies and Simonovic [29], many inte-
grated assessment models, climate-economy models and water
supply and demand models have both higher spatial resolution
and greater complexity in individual sectors than ANEMI has. For
example, IMAGE [3,72] operates at high resolution on a global grid
and includes a variety of important socio-economic and natural
components and processes. WaterGAP2 [5,7] simulates both water
demand and supply for individual river basins. RICE [74] and
GCAM [60,112] divide the world into eight and fourteen economic
regions, respectively. Since modeling involves trade-offs, each of
these models has a different focus and policy-applicability. ANEMI
is intended to provide a balanced, comprehensive approach to-

wards global change and water resources modeling and to serve
as a framework for further integrated assessment efforts. Thus, it
contains a relatively simple representation of the macro-economic
system that is common to climate-economy models like DICE
[74,73] and FREE [39,40], and represents economic growth, indus-
trial emissions and carbon tax effects endogenously, but lacks the
technological detail of larger IA models like GCAM and IMAGE and
so cannot simulate changes in primary and secondary energy sup-
ply and demand. Unlike GCAM and IMAGE, however, ANEMI in-
cludes water supply and demand like the more complicated
WaterGAP2 model and also simulates surface flows and water
scarcity, like WaterGAP2, Macro-PDM [11] and WBM [108]. ANE-
MI, TARGETS and WorldWater [94] also simulate water quality is-
sues, although with several key differences. As compared with
ANEMI, TARGETS models nutrient cycles and human health but
prescribes economic behavior in scenario-form, while WorldWater
models persistent pollution and population growth in greater de-
tail but neglects climate change, nutrient cycles and land-use. Fur-
ther, like LPJmL [86], GCWM [92] and H08 [50], ANEMI simulates
both blue and green water use [84,83] for agricultural (blue water
withdrawal and consumption, and green water consumption) and
domestic and industrial (blue water withdrawal and consumption)
purposes. Finally, ANEMI is not alone in focusing at a global, annual
scale on intersectoral feedbacks – DICE, FREE, TARGETS, World-
Water and World3 [69] also have a global scale, and models like
DICE and GCAM have multi-year temporal resolutions. At the ba-
sin-scale, water resources models typically have monthly resolu-
tions, but some, like Xu et al. [114], Tidwell et al. [102] and
Williams et al. [110] also have an annual resolution. Despite their
low resolution, such models are useful because they show the ef-
fects of long-term changes on average conditions.

In terms of model capabilities, ANEMI can simulate effects of
uncertainties in the climate and carbon systems, such as changes
in climate sensitivity parameters or soil Q10 factors [51], or the land
use and economic sectors, such as the rate of land use change or
the total factor productivity. It can also show the broader effects
of alternative carbon tax levels and population growth mecha-
nisms, and a variety of water resources-related policies and uncer-
tainties. The water sectors – surface flow, water use, and water
quality – simulate changes in many key water resources variables:
total surface flow, surface water availability, domestic, industrial
and agricultural (both blue and green [37]) water withdrawal
and consumption volumes, reservoir evaporation losses, treated
and reused wastewater volumes, groundwater extraction and
desalination volumes and a measurement of water scarcity, called
water stress. Their values depend on water sector processes but
also on dynamic connections to other sectors, such as the climate,
economy and population sectors. Many of their associated param-
eters can be adjusted to show the effects of uncertainties or alter-
native management policies. See Davies and Simonovic [28] for the
full list of adjustable parameters and Davies and Simonovic [29] for
a list of experiments undertaken with the model. Recent updates
described below also allow the model to simulate agricultural pro-
duction and land use for various dietary configurations and their
effects on water quality and availability. Analysis of the output
from ANEMI is relatively straightforward, as shown in Section 4,
and individual simulations take roughly two minutes on a desktop
computer. This simulation speed makes possible the comprehen-
sive Monte Carlo sensitivity analyses conducted with the model
[27,29].

The fast simulation runs and analytical tractability of ANEMI are
partly products of the global-aggregate and annual scales used in
the model, which have important implications for the interpreta-
tion of simulation results, of course. Specifically, precipitation vol-
umes at a global scale may vary little from one year to the next but
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can change significantly at regional scales, while surface water
withdrawal and consumption volumes, and water quality and
treatment levels, differ significantly from one region to the next.
In other model sectors, global GDP figures mask significant na-
tional and regional differences; land use changes and their distri-
butions have important effects on local and regional carbon
emissions, the hydrological cycle, and population distributions;
and the list goes on. Clearly, scale is important. The horizontal inte-
gration in ANEMI therefore represents a trade-off: while many dis-
ciplinary models focus on the scale of individual hydrological,
nutrient cycle, climatic or socio-economic characteristics, ANEMI
focuses on the dynamic feedbacks that connect them. The reason-
ing is as follows. Society and the natural environment are con-
nected through a feedback loop: changes to the climate and
natural systems will require society to adapt, and its adaptation ef-
forts will affect the global environment in turn. This interplay be-
tween natural and socio-economic systems determines the entire
system’s evolution and makes the representation of the corre-
sponding feedbacks critical to the development of appropriate
adaptation and mitigation strategy [29]. Most models focus on spe-
cific components of the earth-system and assume the behavior of
other components by applying projected trends, output of other
models, or reanalysis data to ‘‘drive’’ the behavior of the compo-
nent in question. In other words, most models understand connec-
tions between natural and socio-economic systems by separating
them through modeling techniques [93]. In contrast, ANEMI links
humans directly with hydrological and other systems, models the
world as coupled and non-stationary, represents the system as
complex and adaptive, and synthesizes, by modeling over a long
time-frame, as well as analyzes – see Fig. 5 in Wagener et al.
[109]. We cannot answer all water-related questions with ANEMI,
but we can gain greater insight into the driving mechanisms and
their feedbacks with water resources.

Gleick [47] recently observed that humans are now capable of
planetary-scale disruptions of the ecosystems that sustain us,
and that we have reached this point by various simultaneous expo-
nential increases in population, energy use and industrial emis-
sions, economic activity and water use. ANEMI models these
disruptions, their nonlinear nature and their broader consequences
explicitly. As such, it can inform the debate on the ‘‘global water
crisis’’ [57] by illustrating the effects of key feedbacks and identify-
ing areas that may benefit from further study. Researchers and the
rest of society learn by analogy – the approaches that work in one
location offer suggestions for approaches that work in others. AN-
EMI’s global scale and concentration on the effects of feedbacks
provide a new approach to understanding the causes and effects
of a ‘‘global crisis’’, but its structure and the types of experiments
conducted with the model can also inform existing regionally-fo-
cused approaches.

3.2. Modeling methodology and model structure

ANEMI uses a well-established modeling methodology called
‘‘system dynamics’’ that has many similarities with IA modeling.
As a worldview, system dynamics asserts that a system’s structure
and its associated feedbacks give rise to its observed behavior.
Most real-world events are then a consequence of the internal
structure of a potentially larger, and perhaps unrecognized, sys-
tem. Thus, observed events are not external to the systems they af-
fect but stem instead from unforeseen interactions between
system components. This recognition entails a shift in perspective
from one-way to circular causality that has profound implications
for modeling and for worldview more generally. ‘‘In effect, it is a
shift from viewing the world as a set of static, stimulus–response
relations to viewing it as an ongoing, interdependent, self-sustain-
ing, dynamic process’’ [81, p. 118].

In practice, system dynamics models aim to represent real-
world structures and processes through nonlinear feedbacks,
stocks and flows, and delays. Using first-order ordinary differential
equations, solved numerically, system dynamics models can incor-
porate both empirical and mechanistic approaches [35] and pro-
duce comprehensive simulation models quickly and easily [80].
Rather than improve mechanistic representations of individual
processes, system dynamics models are intended to increase
understanding of the unpredictable effects of feedbacks between
sub-systems, whose behavior would otherwise be assumed or ig-
nored. Thus, individual model components are often relatively sim-
ple and replicate the behavior of key variables or processes [35],
with model improvements occurring analogously to the ‘‘down-
ward approach’’ [96] described above. Modeling and simulation
work in combination: modeling determines structure and clarifies
ideas and simulation then reveals unexpected behaviors and clari-
fies their causes [43]. The analysis of simulation results provides
insight into the system and, where model results are unexpected,
can expose the importance of overlooked feedbacks, or can reveal
errors either in the simulation model’s mathematical execution
and modeling logic or in the ‘‘mental models’’ we use to under-
stand complex systems [97,98]. System dynamics has been applied
successfully to water resources systems at catchment to global and
daily to annual scales [94,100,35,61,64,107,110,14], climate
change and energy-economy modeling [39,31,40,23], and a variety
of real-world problems related to policy analysis, economics, biol-
ogy, medicine, industrial engineering and urban planning, for
example [1,58,35,62].

Fig. 1 shows ANEMI’s basic structure, with sector names in bold
type and feedbacks as arrows that connect the individual sectors
into a set of linked, closed-loop structures. The resulting feedbacks
are a critical feature of the model and mean, in practical terms, that
the values of key variables in one sector affect the values of vari-
ables in other sectors at each time step of a simulation. These closed
loops cause model behavior to emerge from the interactions be-
tween different sectors rather than from input data or driving func-
tions – dynamic behavior is then a result of endogenous feedbacks
[97]. An endogenous approach is well-suited to an exploration of
feedback-effects between elements of the overall system, because
it allows an attribution of system behavior to real-world character-
istics and to the effects of particular feedback relationships within
the model. Positive or negative signs associated with each arrow in
Fig. 1 indicate the direction of change one model component im-
poses on the next. Positive relationships represent change in the
same direction, where an increase/decrease in one sector causes
an increase/decrease in the next sector. Negative relationships
mean that change occurs in the opposite direction, so that an in-
crease/decrease in one sector causes a decrease/increase in the
next sector. Furthermore, each arrow connecting two model sec-
tors bears the name of the sectoral element whose change causes
a related change in the next model sector. For example, the connec-
tion between the carbon and climate sectors, called ‘‘atmospheric
CO2’’, indicates that an increase in the global atmospheric carbon
dioxide (CO2) concentration causes an increase in the global tem-
perature, the key output of the climate sector. Davies and Simo-
novic [29] provide a detailed description of the model as well as
its key equations.

ANEMI has been validated through comparisons with real-
world observations and with results from other models. It has per-
formed well overall, as described in Davies and Simonovic [29].
Specifically, temperature changes produced by the climate sector
are conservative but lie within the spectrum of values from recent
complex climate models, as reported by Forster and Gregory [44];
carbon and hydrological cycle performances compare well with the
data from Keeling and Whorf [59], Berthelot et al. [16], Chahine
[21], Gleick [46] and Shiklomanov [91]; and water use, economic
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growth, and population growth values closely match the data from
Shiklomanov [91], Maddison [65,66], the World Bank [101], and
the United Nations [104]. Simulated future values of the key vari-
ables compare well with the values produced by other models, and
with projections from governmental and international institutions.
Some further information on model performance is provided in Da-
vies and Simonovic [29], while the details of model validation are
presented in Davies [27] and Davies and Simonovic [28].

3.3. Recent updates: agricultural production, green water and water
stress

The version of ANEMI presented here differs from the version in
Davies and Simonovic [29] in several important ways: (1) the new
version models agricultural production and expansion explicitly,
(2) differentiates between green and blue water consumption
[83] in global agriculture, and (3) includes the water quality effects
of rainfed-cropland runoff on water stress levels. Addition of green
water provides a more balanced assessment of the effects of agri-
culture on water resources – the previous version omitted water
quality effects of rainfed agriculture and thus exaggerated the neg-
ative effects of irrigation. The new agricultural production sector
represents the effects of shifts in diet explicitly on land and water
requirements. Finally, the new water stress indicator differentiates
between domestic, industrial and agricultural water uses, and
incorporates the pollution effects of rainfed agriculture. With these
changes, ANEMI can now be used to assess effects of different crop
productivity values, changes in global nutrition levels, shifts in ani-
mal product consumption and variable dilution requirements for
water pollution. This paper describes recent additions to ANEMI
and applies the model to understand connections between global
water resources and socio-economic and environmental change.

The remainder of this section describes recent changes to ANE-
MI to incorporate agricultural production and expansion, green
water, and the new water stress indicator. Data sources for the fol-
lowing calculations include the Food Balance Sheets, yield informa-
tion and annual harvested areas of FAOSTAT [41], yield information
and crop water productivity (g m�3) values from GCWM [92] and
pasture and fodder area and productivity values from Bouwman
et al. [18], since the FAO Food Balance Sheets do not include fodder
and pasture information. Simulated values from the model are

comparable with green water consumption values in Rost et al.
[86], Siebert and Döll [92], Hanasaki et al. [50], Rockström et al.
[85] and Postel [77], while crop yield, harvested area and pasture
area are similar to Siebert and Döll [92], Monfreda et al. [70], FAO-
STAT [41] and Bouwman et al. [18].

3.3.1. Agricultural production and green water
In ANEMI, agricultural production and green water consump-

tion are calculated in several stages. First, daily per capita caloric
consumption (kcal capita�1 day�1, or kcal cap�1 d�1) – the driver
of agricultural crop production and thereby green water consump-
tion – is broken into three energy-content components: food-crop,
animal feed-crop and ‘‘other’’ crop (seed, fuel and processed) pro-
duction. Fodder crops and pasture-based production are simulated
separately because of their different yields and water require-
ments. In equation form, the total per capita caloric consumption
(CC) is,

CC ¼ DC þ IC ð1Þ

where DC is the direct consumption (kcal cap�1 d�1) by humans and
IC is the indirect use of agricultural energy for feed, fodder, grazing
and ‘‘other’’ purposes. The inclusion of indirect consumption is
important because FAO data show that animal-feed and ‘‘other’’
crops currently comprise roughly 50% of the energy in non-fodder
crops; they are therefore critical to the green water consumption
calculations presented later in this section. The direct consumption
is,

DC ¼ ð1� apÞFCc þ ap � APc ð2Þ

where ap is the animal-product fraction of the diet, FCc is the food-
crop consumption per capita and APc is the animal product (meat,
milk, eggs and so on) consumption per capita – both are measured
in kcal cap�1 d�1. DC and ap are prescribed to allow exploration of
the effects of alternative diets on land use and water resources,
while FCc and APc are calculated as functions of the overall diet. Di-
rect consumption, DC, increased from 2195 to 2796 kcal cap�1 d�1

from 1961 to 2007 [41] and is assumed to grow to
2900 kcal cap�1 d�1 in 2100, a level that would virtually eliminate
malnutrition [85]. The animal products component, ap, rose from
0.15 to 0.17 from 1961 to 2007 [41] and is assumed to reach
0.195 by 2100. These values are fairly conservative, since 27% of

Fig. 1. The structure of ANEMI: model components and their feedbacks. (Adapted from [27].)
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US calories came from animal products in 2007 [41] and Bouwman
et al. [18] assumed animal products would make up 25% of the glo-
bal diet by 2030, for example. The indirect consumption of agricul-
tural energy has four components,

IC ¼ AFC þ OC þ AF þ PG ð3Þ

where AFC is animal feed-crop consumption, OC is other-crop con-
sumption, AF is animal fodder and PG is pastoral grazing. All four
terms are measured in Exacalories per year (or Ecal yr�1, where
1 Ecal = 1015 kcal). Eq. (3) is not used directly in the model; it is pro-
vided here simply for illustrative purposes.

Second, the per capita figures of Eq. (2) are converted to global
crop-energy production values (in Ecal yr�1) through multiplica-
tion with the global population, which is simulated in the popula-
tion sector of ANEMI. In a similar fashion, the animal feed- and
‘‘other’’ crop consumption values of Eq. (3) are given by,

AFC ¼ af � APc � P � d=yr ð4Þ
OC ¼ u½ðFCc � P � d=yrÞ þ AFC� ð5Þ

where af is the animal feed-energy input to the animal product-en-
ergy output (for human consumption) ratio, u is the fraction of
‘‘other’’ crops in agricultural non-fodder production, P is the global
population and d/yr is the number of days per year. Historically, the
feed-crop ratio has decreased as the proportions of cereals, roots
and tubers, and sugar crops in feed have increased relative to high-
er-energy animal products, and as animal production has shifted
from ruminants to poultry and pork [41]. Thus, the value for af de-
creases from roughly 3.5:1 to 2.6:1 from 1960 to 2007, while the
fraction in 2100 is assumed to be slightly lower at 2.5:1 – different
values can be tested for their effects on model behavior. The per-
centage of ‘‘other’’ crops in the total agricultural energy production
has risen steadily from 1960 to the present, from roughly 25% to
33% [41]. The fraction of ‘‘other’’ crops, u, is therefore set to 0.34–
0.44 for 1960–2000 and is assumed to rise to 0.55 by 2100. If food-
rather than fodder crops are increasingly used for biomass produc-
tion, the assumed year-2100 value is potentially quite conservative.
The sum of DC, AFC and OC increases from 4.6 Ecal in 1961 to
13.6 Ecal in 2007.

Third, the required agricultural cropland is determined based
on crop yields from irrigated and rainfed land, which are calculated
as,

YIðtÞ ¼
Z

yðtÞ � dt ð6aÞ

yðtÞ ¼ tðt � 1Þ � YIðt � 1Þ ð6bÞ

YR ¼ 0:6YI ð7Þ

where YI is the yield on irrigated land (Gcal ha�1), y is the rate at
which that yield increases (Gcal ha�1 yr�1), t is the prescribed
growth in crop yield (fraction yr�1) and YR is the yield on rainfed
land (Gcal ha�1). Crop yields, t, rose by roughly 2.25% yr�1 from
1960 to 1990 and then at 1.1% yr�1 from 1990 to 2007 [77,9] there-
after, t is assumed to decline to zero by 2100. Initial globally-aver-
aged yield values of YI = 6.25 Gcal ha�1 and YR = 3.75 Gcal ha�1 in
combination with the ‘‘nutritive factors’’ from the FAO [42] give irri-
gated and rainfed yields of 13.6 Gcal ha�1 and 8.2 Gcal ha�1 in 2000,
for an average yield of 10.2 Gcal ha�1. This average yield is in line
with global values of 9.6 Gcal ha�1 [41] and 10.3 Gcal ha�1 [92].
To the best of our knowledge, this second publication is the only
one that provides specific regional and global values for irrigated
versus rainfed yields, and the irrigated yields provided are for crops
grown on irrigation-equipped fields, with the actual irrigated yields
approximately 20% higher than those they provide.

Based on Bouwman et al. [18] and Siebert and Döll [92], ANEMI
also simulates the growth of fodder crops and pastures as animal
feed, according to,

ACT ¼ aIO � AP ð8Þ

where ACT is the total consumption of agricultural energy from
feed, fodder, and grazing (Ecal yr�1) by animals, AP is the animal
product consumption (Ecal yr�1; AP = APc � P � d/yr) and aIO is the
prescribed ratio of energy input to animal product output. This
parameter declines as in Bouwman et al. [18] from 14.1:1 to
10.4:1 from 1970 to 2030 – values for 1960 and 2100 are selected
to follow this trend. Pastoral grazing (PG) is assumed to account
for 35% of caloric intake of animals in 1960, less than 33% in 2000
and 28% by 2100. The pastoral percentages were chosen, given
the assigned feed-input to animal product-output ratio, to match
both the decreasing trend of feed-energy from grazing in Bouwman
et al. [18] and the fodder production in 2000 from Siebert and Döll
[92]. Fodder crop yield rises in the same fashion as the irrigated
yield in Eqs. (6a) and (6b), while pastoral yield is assumed to in-
crease at half the rate of agricultural crops, representing the less
intensive management of pasture land. Initial yields are selected
as 16 Gcal ha�1 and 0.65 Gcal ha�1. Fodder production is calculated
from,

AF ¼ AP½aIOð1� agÞ � af � ð9Þ

where AF is the fodder production (Ecal yr�1) and ag is the pastoral
grazing fraction with the values given above. Multiplication of the
irrigated and rainfed yields of step three with the required energy
production values of step two gives a total food-, feed- and ‘‘other’’
crop area of 1162 Mha in 2000 (262 Mha irrigated, 900 Mha rain-
fed), which is close to the FAOSTAT value [41] of 1135 Mha. Includ-
ing fodder production, according to Eq. (9), gives a total harvested
area of 1290 Mha to match the values of Siebert and Döll [92] and
Monfreda et al. [70] at 1305 and 1290 Mha, respectively. In 1960,
with lower crop productivity, the harvested areas without and with
fodder, respectively, are 974 Mha and 1157 Mha. The pasture area is
3145 Mha in 1970 and rises to 3460 Mha in 1995 to approximately
match the figures of 3268 Mha and 3415 Mha in Bouwman et al.
[18].

Finally, virtual water contents (VWC; in m3 Gcal�1) are com-
bined with global crop-energy values (Ecal yr�1) to determine
green water consumption values (km3 yr�1). The calculation is as
follows. Virtual water contents for each of the major crop groups
– cereals, roots and tubers, sugar crops, vegetables and fruits, oil
crops, and pulses – were calculated from crop production and
nutritive factor values [41,42] and crop water productivity (CWP;
in g m�3) factors [92]; forage values were omitted since they are
not provided in the Food Balance Sheets. The crop-group virtual
water contents and the weighted average of energy-production
by crop group – in 2000, crop-energy was provided by cereals
(63%), oil crops (15%) and roots and tubers (6%), for example –
gives an aggregate virtual water content of roughly 420 m3 Gcal�1.
Omitting more water-efficient fodder crops, aggregate virtual
water content values from Siebert and Döll [92] and Rockström
et al. [85] are 435 m3 Gcal�1 and 530 m3 Gcal�1, respectively. Com-
bining the virtual water contents with the crop-energy values then
gives an equation for green water consumption (Cg) as,

Cg ¼ xcðFC þ AFC þ OCÞ þxf ðAF þ PGÞ ð10Þ

where xc and xf are the virtual water content values of food-, feed-
and ‘‘other’’ crops, set to 450 m3 Gcal�1, and of fodder crops and
pasture, set to 250 m3 Gcal�1. Eq. (10) results in a green water con-
sumption of 1650 km3 in 1960 that rises to 4720 km3 in 2000; blue
water consumption over the same period rises from 1040 km3 to
1800 km3, which matches values in Shiklomanov [91] but is higher
than consumption values in Siebert and Döll [92], Rost et al. [86]
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and Hanasaki et al. [50]. The same authors, as well as Rockström
and Gordon [84], calculated green water consumption values in
2000 of 5505 km3, 7242 km3, 7820 km3 and 5400 km3, respectively.
Although virtual crop-water contents are likely to decrease over
time through agricultural research – Rockstrom et al. [85] assumed
that water productivity improves in developing countries from
1770 m3 tonne�1 in 2002 to 1200 m3 tonne�1 in 2050, for example
– they are kept constant in ANEMI in the reference simulation.

3.3.2. Water stress
Water stress, a key variable in ANEMI, has no single, commonly

accepted definition [82]. Here, water stress is defined as ‘‘a mea-
sure of the degree of pressure put on water resources (including
its quantity and ecosystems) by users of the resources, including
municipalities, industries, power plants and agricultural users’’
[8, p. 353]. The most commonly used indicator of water stress is
the ‘‘Falkenmark indicator’’, a per capita measure [82]. The ‘‘Water
Resources Vulnerability Index’’ used here, which is calculated as
the ratio of the annual withdrawals-to-availability (wta), is also
used widely, particularly in water resources modeling [11,82]. In
equation form, water stress can be calculated simply as,

wta ¼W=R ð11Þ

where W is the surface water withdrawal volume and R is the sur-
face runoff. Both are measured in km3 yr�1. Water stress (wta) val-
ues of 0.2 indicate ‘‘mid-stress’’, while values of 0.4 and higher
indicate ‘‘severe stress’’ [8,82]. Vörösmarty et al. [108] used a simi-
lar scale. According to Arnell [11], water scarcity can have signifi-
cant effects on socio-economic and environmental systems, where
an indicator values of 0.2 or higher suggests that water stress is
likely to limit development.

Rijsberman [82, p. 7] observes that ‘‘water quality ought to be
another major variable in an assessment of water scarcity, [since]
fresh water may become polluted as it flows downstream and be-
come de facto unusable. . .’’. However, although several authors
note its importance [53,45,94,36,15], the environmental and so-
cio-economic effects of water quality on water scarcity have not
been modeled at a large scale. To include water quality effects on
surface water availability, ANEMI modifies the ‘‘withdrawals-to-
availability’’ ratio of Eq. (11). The rationale is as follows. Wastewa-
ter results from domestic water use, manufacturing processes, irri-
gation projects, and rainfed cropland, and pollutes receiving
waters. Pollution makes those receiving waters unsuitable for fur-
ther use in many cases, especially for drinking-water supply. Spe-
cifically, every cubic meter of contaminated wastewater
discharged into water bodies and streams renders eight to ten cu-
bic meters of pure water unsuitable for use, according to Shikloma-
nov [91]. Dabrowski et al. [26] found generally lower dilution
requirements for South African agriculture. Based on the assump-
tion that nitrogen, phosphorus and pesticide losses are roughly
10%, 5% and 1%, respectively, of the applied amounts, they quanti-
fied dilution requirements for agricultural runoff from five major
crops and calculate ratios of roughly 0.8:1 (maize) to over 15:1
(cotton) for water quality:water quantity requirements. For three
major crops (maize, wheat and sugar cane), they found ratios be-
tween 0.8:1 and 1.7:1, but their values may be somewhat conser-
vative: for example Schlesinger [89] calculated global nitrate and
total nitrogen losses to surface runoff of 15% and 23%, respectively,
based on studies in the Northeastern United States. Boyer et al. [19]
modeled a global-average riverine nitrogen export of 25%, based on
inputs from synthetic fertilizers, atmospheric deposition, natural
fixation and lightning. Liu et al. [63] reported leaching and erosion
losses of 16% and 15%, respectively, of the total global nitrogen in-
put. Chapagain et al. [22] calculated that, on a worldwide basis,
roughly 19% of the virtual water content of cotton is for dilution
of nitrogen applied as fertilizer. Overall, uncertainty in global nitro-

gen fluxes is high: few values are known to better than ±20% and
many have uncertainties of ±50% and higher [48].

3.3.3. Water quality
ANEMI quantifies water quality effects as follows. Through its

dilution requirements, untreated wastewater increases the amount
of surface water appropriated for human use by the volume of
clean surface water required to dilute both the polluted volume
of blue water and the polluted runoff from rainfed cropland. To
incorporate these water quality effects on water stress levels re-
quires two steps. First, ANEMI reduces domestic, industrial and
agricultural withdrawals by the amount of clean, reusable (post-
treatment) water returned to surface sources, and then applies
use-specific (domestic, industrial and agricultural) blue water dilu-
tion factors to calculate an effective blue water withdrawal. As de-
scribed in Davies and Simonovic [29], all domestic wastewater is
assumed to be polluted [46]. For industrial uses, manufacturing
is assumed to pollute surface water but the cooling requirements
of thermoelectric power generation are neglected [105]. Non point
source pollution from agriculture is assumed to be untreatable
[78,24]. Second, ANEMI models the volume of runoff from rainfed
cropland and pasture as an area-weighted fraction of the total run-
off from the land surface, and then applies a ‘‘green water’’ dilution
multiplier to calculate dilution requirements for agricultural
chemical use on rainfed land. Three equations, for domestic, indus-
trial, and agricultural water use, are the result,

Weffd ¼ Cd þ ddRpd
ð12aÞ

Weffi ¼ Ci þ diRpi
ð12bÞ

Weffa ¼ Ca þ daRpa
þ drRr þ dgRg ð12cÞ

where the three Weff terms are the effective withdrawals (km3 yr�1)
for domestic (d), industrial (i), and agricultural (a) purposes, the C
terms are water consumptions (km3 yr�1), the d terms are dilution
multipliers, and the Rp terms are the polluted return flow volumes
for blue water, and for rainfed cropland, Rr, and pasture, Rg

(km3 yr�1). Both consumption and return flow volumes are dy-
namic, while the blue water dilution multipliers are reduced from
9 [91] to 7.5 – by 16% to incorporate the self-cleaning mechanisms
of rivers [113] – and the two green water dilution multipliers, for
rainfed cropland (dr) and pasture (dg), are set to 1 based on Dabrow-
ski et al. [26] and 0.1 (assumed). Because best values for dilution
multipliers are unknown, the selected values are the subjects of
sensitivity analyses, below. Finally, the sum of the Weff terms is
the surface water withdrawal volume, W (km3 yr�1) from Eq. (11),
so that the water stress equation can be rewritten as,

wta ¼
X
d;i;a

Weff

 !
=R ð13Þ

The result of the Eq. (13) is that a larger volume of untreated waste-
water makes a smaller volume of clean water available for domes-
tic, industrial, and agricultural purposes. The runoff value, R, is the
total annual surface runoff, which several other authors [79,94,5]
reduce to an ‘‘accessible runoff’’ volume, since the whole volume
is inaccessible. We do not take this approach because the combina-
tion of reduced runoff and withdrawal increases through dilution
requirements results in water stress values well over wta = 1.0.
Thus, a higher value of water stress is calculated here than in Eq.
(11); however, the experiments undertaken below show how Eq.
(13) offers an improvement on the standard definition by explicitly
incorporating the effects of water pollution on water availability.
Davies and Simonovic [28,29] and Davies [27] provide a detailed
description of the model’s water sectors and a fuller analysis of
the effects of Eq. (13) on simulated behavior.
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4. Model use and water management

This section describes applications of ANEMI to water resources
management, in terms of water stress definitions, wastewater
treatment and reuse, expansions in the irrigated area and changes
in the human diet. The first part describes the analytical approach
used in this section, while the second presents the behavior of the
reference simulation against which the experiments are compared.
The third and largest component of the section analyzes a set of
five simulation runs.

4.1. Analytical approach: feedback tracing

To understand the causes of differences in model behavior be-
tween the reference simulation and the experiments in the follow-
ing sections, we use an analytical approach called ‘‘feedback
tracing’’. Feedback tracing has two basic forms: a standard, reverse
causal-tracing approach and a more complicated feedback-isolat-
ing approach. Both find the causes of differences in key variable
values between the experimental and reference simulations by fol-
lowing chains of interconnected variables. To understand the prin-
ciple of the approach, consider the following example. Assume that
the water stress variable, wta, on the left-hand side of Eq. (13) be-
gins with the same values in the reference simulation and an
experimental simulation that increases the population growth
rate. The parameter changes used for this population experiment
will cause the water stress values to diverge gradually between
the simulations so that wtaexpt will differ noticeably from wtaref

after some time, t. According to Eq. (13), possible causes are differ-
ences in the numerator (the ‘‘effective withdrawal’’, or Weff),
denominator (the ‘‘surface runoff’’, or R), or both values. Further,
the two variables, Weff and R, that determine the value of water
stress (wta) are products of several other calculations. Thus, the
number of variables that could be responsible for the divergence
in wta values in the reference simulation and experiment one
grows significantly as we trace backwards from one equation to
the next.

In most cases, one right-hand side variable differs considerably
between the reference and experimental runs while the other
right-hand side variables have relatively similar values. In the
example above, the effective withdrawal comes from the ‘‘water
use’’ sector, while the surface runoff is from the ‘‘hydrological cy-
cle’’; parameter changes for the agricultural water-use experiment
would be expected to change the ‘‘effective withdrawal’’ more than
the global surface runoff. Then the standard feedback analysis ap-
proach applies. Assume that the differences between Weffref

and
Weffexpt are significantly larger than the differences between Rref

and Rexpt. Feedback analysis then begins with the variables on the
right-hand side of Eq. (2), Weff, and checks for the variable or set
of variables that differs most from the reference to the experimen-
tal simulation. Again, the difference between the base and experi-
mental values of one variable, Weffd ; Weffi or Weffa0 , is generally
considerably larger than that of the other two variables. The anal-
ysis continues backwards through right-hand side variables until
the differences between their reference and experimental simula-
tions are negligible, or Xref ffi Xexpt, at which point the causal tracing
stops. With the point of divergence identified, any differences be-
tween the variables in the reference simulation and experiment
one must have occurred in the variables already examined. The cal-

culations for these variables can then be checked for sensitivity to
the imposed parameter changes. In this case, feedback analysis al-
lows us to determine whether change in domestic, industrial or
agricultural use with population growth affects the water stress
value most.

The second form of feedback analysis, feedback isolation, be-
comes necessary when causality is difficult to determine. In such
cases, several different feedback loops contribute to the divergence
in variable values between the selected experiments and no single
cause dominates. To isolate feedbacks, individual loops are severed
so that only one feedback of interest is allowed to operate in a sim-
ulation run, while other key variables are held to a form of behav-
ior common to all experiments. A set of supplementary
experiments is run where each focuses on a different feedback.
The isolation approach allows the identification of the major feed-
back, or set of feedbacks, responsible for the simulated behavior
from a potentially large group of minor feedbacks. However, it
should be used with caution, as it severs links between variables
– and thus alters model structure – that could produce important
feedback-effects with other model components.

Regardless of the feedback analysis approach chosen, both re-
veal not just the direct cause but the reason for the differences be-
tween simulations: they provide insight into the functioning of the
system, and help to identify the dominant structures and feedbacks
in the model. When the modeled system contains a small number
of feedbacks, feedback analysis is straightforward. However, in
dynamically complex systems where possibly thousands of feed-
backs – in the case of ANEMI’s water stress, for example – affect
model behavior through nonlinear equations, the approach be-
comes especially powerful since important variables can be identi-
fied quickly, while variables with relatively similar values between
simulation runs can be eliminated as causes.

4.2. The reference simulation

Generated using the initial model configuration, the reference
simulation serves as the basis of comparison for other experiments.
It shows a doubling of the global population from 1960 to 2000 and
then a slower increase to 2100. The simulated population numbers
from 1960–2000 match United Nations figures [104] quite closely
(see Table 1), being roughly 20 million too high in 2000.

Other key variables also increase over the 140-year simulation
period. The modeled temperature rises from 1960 to the present,
but at roughly half the rate suggested by Vinnikov et al. [106] from
1978 to 2004 because of the relatively small sensitivity of the cli-
mate sector, which is based on Harvey and Schneider [52]. In the
carbon cycle sector, the atmospheric carbon dioxide levels are
close to those of Keeling and Whorf [59] with a value of 374 ppm
in 2000. Values for net primary productivity (NPP), which is the
net flux of carbon dioxide from the atmosphere into green plants,
compare well with both observed and simulated figures from the
literature, with a 2000 value of 64 Gt C yr�1. The economic output
produced by the model from 1960 to 2005 matches figures from
Nordhaus and Boyer [74], Maddison [66] and the World Bank
[101] closely, with a 1960 value of $5.45 � 1012 yr�1 in 1990 US
dollars at market exchange rates and a 2005 value of
$30.0 � 1012 yr�1, while the difference in cumulative industrial
emissions between the model simulation and the data [68] is only
2 Gt C, or 1.0%, over 40 years.

Table 1
UN data versus ANEMI values (in 109 people).

Year 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

UNESA [101] 3.02 3.34 3.70 4.08 4.45 4.86 5.30 5.72 6.12 6.51
ANEMI 3.02 3.37 3.73 4.12 4.51 4.91 5.32 5.73 6.14 6.54
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In the water sectors, the total available surface water decreases
first to 2000, as a result particularly of evaporation from the sur-
faces of reservoirs [91], and then increases from 2000 to 2100 as
climate change and the related enhancement of the hydrologic cy-
cle compensate [54]. Furthermore, in all three water use sectors –
domestic, industrial and agricultural – surface water withdrawals
increase strongly to 2000 and then remain basically constant over
the next century, while surface water consumption grows quickly
from 1960 to 2000 and then rises more slowly over the next hun-
dred years. These behaviors result from technological change and
from the simulated rates of increase in efficiency, reservoir sur-
face-evaporation and wastewater treatment and reuse. Simulated
values for global domestic, industrial and agricultural water with-
drawal and consumption volumes match historical figures from
Shiklomanov [91] very closely. For example, in 1995, the last year
for which observed figures are available, simulated total withdraw-
als and consumption are 3774 and 2084 km3 yr�1, respectively,
while the observed figures are 3788 and 2074 km3 yr�1 – see Fig. 2.

Reference simulation values into the future are lower than
those of Shiklomanov [91]; instead, at 4346 and 2417 km3 yr�1

by 2025, they are closer to values from Cosgrove and Rijsberman
[25] and Alcamo et al. [6] at 4300 and 2100 km3 yr�1, and
4091.5 km3 yr�1, respectively. In terms of water scarcity, water
stress levels peak around the present and then decrease over the
next hundred years as wastewater treatment and reuse programs
become more common.

4.3. Insights into water resources management from ANEMI

Using the feedback-tracing approach described above, this sec-
tion describes and analyzes five sets of experiments that focus on
wastewater treatment and reuse, irrigation expansion, animal
product consumption and the effects of alternative dilution factor
values. The first two experiments focus on blue water resources,
and demonstrate the effects of wastewater treatment and reuse
on blue water resources. In many areas of the world, wastewater
is already treated, which reduces or even eliminates the contami-
nation effect of wastewater on pure receiving waters. Increasingly,
water-scarce regions, such as the Middle East, Southern Africa and
parts of the United States, are also reusing treated wastewater to
reduce the demand for surface water withdrawals [45,46]. In con-
trast, wastewater is untreated in other areas and its discharge into
surface waters causes pollution. Regardless, studies of water scar-
city have tended to disregard water pollution effects because water
quality has been seen either as a local concern without global im-
pact, or modeling water quality at the global scale has been seen as
too difficult because of a lack of information. We show here that
large-scale modeling is possible and that the effects of dilution
requirements on simulated behavior are considerable. In the mod-
el’s reference run, higher levels of water scarcity drive improve-

ments in wastewater treatment and reuse infrastructure. Two
experiments illustrate these effects: experiment one, ‘‘low treat-
ment, no reuse’’, allows neither wastewater treatment nor reuse
(beyond the fraction treated in 2000) and so illustrates the mod-
el-wide effects of the greatest volume of water pollution, while
experiment two, ‘‘high treatment, no reuse’’, allows wastewater
treatment without reuse and so simulates the broader effects of
wastewater reuse.

Experiments three and four include both blue and green water
resources, and investigate the expansion of irrigated agriculture
and the effects of more animal products in the human diet. In
the real world, irrigation is responsible for a large proportion of
the total blue water withdrawn from surface water resources per
year, accounting for 67% of the global withdrawal and 87% of the
global water consumption [33]. Irrigated agriculture is an impor-
tant source of food but is also expensive and damaging to water re-
sources and the environment [78]. After considerable expansion in
the 1950s-1970s, irrigation growth has slowed noticeably in both
developed and developing countries because the best sites have
generally already been developed [78]. Expansion of the irrigated
area into the future is therefore unknown, and is assumed to grow
slowly in the reference simulation, according to the approach ta-
ken by Simonovic [94]; however, because Shiklomanov [91] sug-
gests that the global irrigated area will grow considerably in the
future to meet the needs of a growing population, experiment
three explores an expansion of the global irrigated area. In terms
of experiment four, animal production is resource intensive. It re-
quires significant agricultural inputs from feed-crops, fodder and
pastoral grazing, as well as large volumes of water and agricultural
chemicals. According to Bouwman et al. [18], the ratio of feed-en-
ergy in to animal product-energy out (from meat, dairy products,
eggs and so on) was over 14:1 in 1970 – and other authors like
Wirsenius [111] find even higher ratios – although it has fallen
somewhat since. Experiment three, ‘‘irrigation expansion’’, and
experiment four, ‘‘more animals’’, therefore investigate the effects
of an increased irrigated area and of increased animal-product con-
sumption on the balance of blue and green water consumption, on
water stress levels and on the rest of the society-biosphere-climate
system.

Finally, the set of simulations in experiment five investigates
the effects of different ‘‘green water’’ dilution requirements for
rainfed agriculture. Since appropriate values for fertilizer and pes-
ticide dilution factors are unknown, as explained above, experi-
ment five shows the model results for several different sets of
parameter values.

4.3.1. Representation of policy options
Each model sector contains both variables and parameters.

Variables change in value over time according to mathematical
equations and experimentation could, in theory, involve changes

Fig. 2. ANEMI versus observed water withdrawal and consumption values [91].
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in these equations to determine their influence on model behavior.
However, since such changes would modify the model’s structure,
and could therefore yield a fundamentally new model, they are not
considered here. Instead, various socio-economic policy options
are simulated through changes in appropriate model parameters
– this approach to policy simulation affects behavior without
changing structure.

Parameters are one of four types: initial values, constants,
switches and exogenous variables. Initial value parameters give
starting values for model variables, constants retain a single value
over the course of the simulation, switches enable or disable a cer-
tain type of model behavior and exogenous variables vary over
time in a fixed, pre-set manner. Changes in initial values can have
significant effects on model behavior, but are of less interest here
because they concern the effects of uncertainty in a starting-point
rather than altering the dynamic behavior of the model. The last
three parameter types are therefore of more interest. Modifications
to constant values generally relate to model sensitivity – the values
of constants are typically changed to determine the degree to
which the model reacts to that change. Switches enable or disable
critical feedbacks in the model in a binary ‘‘on–off’’ fashion. Finally,
exogenous variables represent input to the model that changes
over time in a predetermined fashion. In this case, the process driv-
ing the change is not modeled explicitly and the real-world ele-
ments involved in determining change in these exogenous
variables consequently exist outside the system boundaries.

Experiments one to five involve the modification of a small sub-
set of parameters in the socio-economic sectors of the model, as
shown in Table 2. Specifically, ‘‘low treatment, no reuse’’ changes
two water quality sector constants that represent delays in estab-
lishing both domestic and industrial wastewater treatment facili-
ties so that less wastewater is treated in this experiment than in
the reference case. Furthermore, both ‘‘low treatment, no reuse’’
and ‘‘high treatment, no reuse’’ set the switch related to wastewa-
ter reuse to zero (off) so that no treated wastewater is reused over
the simulation period. ‘‘Irrigation expansion’’ doubles the ‘‘irriga-
tion expansion multiplier’’ after the year 2000 so that the simu-
lated irrigation area matches Shiklomanov [91] until 2000, but
then rises at twice the reference rate thereafter. ‘‘More animals’’
raises the fraction of meat in the human diet linearly from 0.172
in 2007 to 0.25 by 2030 [18] and holds that value to 2100, whereas
the reference run has a linearly rising consumption from 0.172 in
2007 to 0.195 in 2100. Finally, experiment five sets the ‘‘green crop
water dilution factor’’ and ‘‘green pasture water dilution factor’’
parameters to a range of values to show the effects of larger and
smaller dilution requirements.

4.3.2. Effects of policies on model variables
In each experiment, the imposed parameter changes directly af-

fect certain key variables and indirectly affect others through dy-
namic feedbacks. Where an equation contains a parameter
altered in one of the experiments, that change has a direct effect
on the model variable on the left-hand side. For example, the

parameter changes in the ‘‘low treatment, no reuse’’ experiment af-
fect the rate of change in the fraction of domestic or industrial
wastewater treated, dfclx=dt (in fraction yr�1), through the parame-
ter that represents the delay in establishment of further treatment,
sfclx (in yr). For these and related terms, the subscript x pertains to
domestic (x = d) or industrial (x = i) wastewater. In equation form,

dfclx

dt
¼ wta � fclx

sfclx

ð14Þ

where wta is the water stress from Eq. (13), is the fraction (from 0 to
1) of domestic or industrial wastewater currently treated, and the
other terms are as defined above. This equation causes the treated
fraction to rise exponentially to a maximum value, set optimisti-
cally to 100%, at a rate determined by the water stress and delay
terms. An alternative logistical growth approach for domestic and
industrial treatment and wastewater reuse, described in Davies
[27], yields a smoother transition from treatment growth to a stea-
dy state value. Although the model is sensitive to the differences be-
tween the exponential (Eq. (14)) and logistical growth approaches,
the experiments listed in Table 2 produce far larger changes in
model behavior. For example, the difference in population, GDP,
global temperature, water withdrawals and water stress in 2100
are 200 million, $1.5 � 1012 yr�1, 0.006 �C, 272 km3 yr�1 and
0.046, respectively. Similarly, parameter changes in the ‘‘irrigation
expansion’’ experiment affect the growth of the irrigated area di-
rectly. The equation is,

dI
dt
¼ ðl � ebaseÞ � I ð15Þ

where dI/dt is the expansion in the irrigated area (ha yr�1), l is the
irrigation expansion multiplier manipulated in the experiment, is
the base expansion rate (fraction yr�1) and I is the current irrigated
area (ha).

In contrast, where the change in a variable’s value comes
through feedbacks that connect it to one or more other variables,
the change can be indirect. For example, Eq. (14) shows not only
the direct effect described above but also a feedback effect: higher
levels of water pollution, introduced through the water stress var-
iable, wta, drive efforts to improve treatment. Therefore, at the
same time that water stress is influencing the degree of wastewa-
ter treatment through Eq. (14), the fraction of wastewater treated
feeds back to affect water stress through Eq. (13). Causation occurs
simultaneously through model feedbacks, and so the resulting
changes in behavior can be difficult both to foresee and under-
stand. In such cases, simulation is particularly useful.

4.3.3. Blue water experiments: wastewater treatment and reuse
The reference results of the model are compared here against

results from the two blue-water experiments, ‘‘low treatment, no
reuse’’ and ‘‘high treatment, no reuse’’. In examining the simulation
results, note that IA models are intended to improve insight into
key real-world processes and characteristics, rather than to pro-
vide predictions. Therefore, despite the provision of quantitative

Table 2
Experimental configuration and associated changes to ANEMI parameters.

Experiment title Objective: ‘‘Show effects of...’’ Parameter changed Parameter reference value Experimental value (post-2000)

1. Low treatment, no reuse High volumes of polluted water Domestic treatment Delay 15 yr 108 yr
Industrial treatment delay 40 yr 108 yr
Wastewater reuse switch 1 (on) 0 (off)

2. High treatment, no reuse Greater wastewater reuse Wastewater reuse switch 1 (on) 0 (off)
3. Irrigation expansion Larger irrigated area Irr. expansion multiplier 1 2
4. More animals Greater animal product consumption Animal product fraction 2100: 0.195 2030: 0.25
5. Dilution requirements Alternative dilution requirements Green crop water dilution 1 0.5, 1.5, 2, Var.

for rainfed agriculture Gr. pasture water dilution 0.1 0.05, 0.15, 0.2, Var.
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values, the important experimental results are the qualitative dif-
ferences between simulations and corresponding differences in
behavioral patterns.

Parameter changes in the two experiments led to the direct ef-
fects presented in Table 3. The ‘‘low treatment, no reuse’’ experi-
ment showed high volumes of untreated wastewater over time
and no reuse of treated wastewater. The ‘‘high treatment, no reuse’’
experiment had no reuse, but wastewater treatment was simu-
lated at levels higher than in the reference run.

The experiments also demonstrate the value of a feedback-
based model: almost every key variable value in the experiments
differed from its reference value, whether or not that variable
was directly linked to the altered parameters and variables. Such
differences indicate that, while the simulated management deci-
sions generally had strong direct effects, they also had important
indirect, or feedback, effects that caused the changes in one sector
to propagate throughout the model sectors (see Fig. 1). Table 4 fo-
cuses on these indirect effects, and the global population figures
present a clear example: while the reference run had a final popu-
lation in 2100 of 12.50 billion people – an endogenously-generated
value that is similar to those in Fiddaman [39] and Alcamo et al.
[2], and sits in the middle of the range of SRES projections [71] be-

tween the B2 and A2 scenarios – the values for population in the
three water resource policy experiments were smaller by 720 mil-
lion and 370 million people for the low and high treatment exper-
iments, respectively.

4.3.3.1. Blue water withdrawals. In ANEMI, blue water use and reuse
for domestic, industrial, agricultural and reservoir purposes sum to
the total surface water withdrawal. Specifically, domestic with-
drawals depend on the global population, the economic gross
domestic product (GDP), technological change, desalination and
wastewater reuse, industrial withdrawals depend on GDP, electric-
ity production, technological change and wastewater reuse, and
agricultural withdrawals depend on the irrigated area, water
requirements per hectare, technological change, climate change,
fossil groundwater use and wastewater reuse. In equation form,
these withdrawals, Wd, Wi, and Wa, in km3 yr�1, are calculated as,

Wd ¼ z � DSWI � P � DS� Q rd
ð16Þ

Wi ¼ z � ISWI � EO� Q ri
ð17Þ

Wa ¼ zabbase½Tfeedback � I� � GW � Q ra ð18Þ

where the z terms represent technological change, DSWI and ISWI
are the domestic and industrial structural water intensities in
m3 cap�1 and m3 MWh�1 [5], P is the global population (people),
EP is the electricity production (MWh), DS is the volume of desali-
nated water (km3 yr�1), the Qr terms represent treated wastewater
reuse in each sector (km3 yr�1), bbase is the base specific water in-
take (m3 ha�1), Tfeedback is the effect of climate change on evapora-
tion rates (a multiplier) and GW is the withdrawal of non-
renewable groundwater resources (km3 yr�1). Both DS and GW are
negligible volumes at well less than 1% of the total. See Davies
and Simonovic [28,29] for a more detailed description of Eqs.
(16)–(18).

In terms of experimental results, the blue water withdrawal –
see Table 4 – in the reference run was 4372 km3 yr�1 in 2100,
while the withdrawals for the low and high treatment experiments
were higher by 959 and 991 km3 yr�1, or 22% and 23%, respec-
tively. In both experiments, the majority of these additional with-
drawal volumes were for irrigated agriculture, Eq. (18). Where

Table 3
Direct effects of the blue water experiments on key variables.

Key variable 2000 2010 2025 2050 2075 2100

Untreated wastewater (km3 yr�1)
� Reference 860 842 766 500 269 235
� Low treatment, no reuse 885 910 978 1053 1121 1170
� High treatment, no reuse 885 885 848 722 703 727
Treated wastewater (km3 yr�1)
� Reference 342 452 612 863 946 1025
� Low treatment, no reuse 349 441 517 624 706 759
� High treatment, no reuse 349 466 647 959 1137 1229
Wastewater reuse (km3 yr�1)
� Reference 46 81 170 459 904 1025
� Low treatment, no reuse 0 0 0 0 0 0
� High treatment, no reuse 0 0 0 0 0 0

Table 4
Feedback effects of the blue water experiments on key variables.

Key variable 2000 2010 2025 2050 2075 2100

Population (109 people)
� Reference 6.14 6.94 8.10 9.82 11.28 12.50
� Low treatment, no reuse 6.13 6.94 8.07 9.69 10.91 11.78
� High treatment, no reuse 6.13 6.94 8.08 9.75 11.09 12.13

Temperature change (�C)
� Reference 0.30 0.42 0.62 0.99 1.39 1.83
� Low treatment, no reuse 0.30 0.42 0.62 0.98 1.38 1.80
� High treatment, no reuse 0.30 0.42 0.62 0.98 1.38 1.81

Atmospheric [CO2] (ppm)
� Reference 374 395 430 499 585 693
� Low treatment, no reuse 374 395 430 498 582 683
� High treatment, no reuse 374 395 430 498 583 688

Economic output ($1012 yr�1)
� Reference 26.55 33.23 43.18 60.85 80.62 102.83
� Low treatment, no reuse 26.53 33.19 43.07 60.19 78.36 97.46
� High treatment, no reuse 26.53 33.19 43.08 60.47 79.47 100.06

Blue water withdrawals (km3 yr�1)
� Reference 3894 4130 4346 4406 4258 4372
� Low treatment, no reuse 3940 4210 4512 4854 5131 5331
� High treatment, no reuse 3940 4210 4513 4859 5146 5363

Water stress (–)
� Reference 0.35 0.36 0.35 0.31 0.28 0.29
� Low treatment, no reuse 0.36 0.37 0.39 0.41 0.43 0.45
� High treatment, no reuse 0.36 0.37 0.37 0.35 0.36 0.37
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irrigation projects received 615 km3 yr�1 of reused water in the
reference simulation, they were forced instead to rely on additional
surface water withdrawals in the two experiments. As a result,
agricultural water use was almost 24% higher, or to rephrase, by
2100 the reuse of treated wastewater in the reference run reduced
the use of clean surface water by 24% annually.

In the domestic and industrial sectors, wastewater reuse like-
wise reduced total withdrawals while also allowing relatively
greater water use. For example, although the reference run con-
sumed slightly more water than the low and high treatment exper-
iments, surface water withdrawals were higher for both
experiments throughout the simulated period. Specifically, domes-
tic withdrawals in 2100 were 985, 1028 and 1057 km3 yr�1 for the
reference run, ‘‘low treatment, no reuse’’ and ‘‘high treatment, no
reuse’’ respectively, while the actual water use volumes – the first
term on the right-hand side of Eq. (16) – were 1087, 1028 and
1057 km3 yr�1. Wastewater reuse reduced domestic water with-
drawals by more than 100 km3 yr�1. Finally, by 2100 the industrial
withdrawal volumes in the two experiments were 303 and
306 km3 yr�1 higher, respectively, than the reference value of
630 km3 yr�1, again because treated wastewater could not be
reused.

4.3.3.2. Water stress, and wastewater treatment and reuse. Water
stress is a key variable in ANEMI because of its connections to vari-
ables in both the water sectors and the rest of the model. Water
stress affects population growth and population then dominates
the socio-economic behavior of the model, causing changes in eco-
nomic output, industrial and land-use emissions and global surface
temperature, as described in Davies and Simonovic [29].

The differences in water stress levels in Fig. 3 between the three
simulations are directly related to wastewater treatment and re-
use. Wastewater treatment in the ‘‘high treatment, no reuse’’
experiment reduced the untreated volume by 443 km3 yr�1 in
2100 from its low treatment value, with clear effects on water
stress. Furthermore, as compared with the reference simulation,
the higher water stress level in the high treatment experiment
drove greater establishment of wastewater treatment facilities –
204 km3 yr�1 more wastewater was treated. This feedback effect
is apparent in Eq. (14), where a higher water stress (wta) value
causes the treatment fraction, fcl, to grow more quickly. (This feed-
back can also have the opposite effect, however: an apparent in-
crease in water availability reduces water stress and so decreases
the rate of establishment of new wastewater treatment facilities.)

Wastewater reuse then accounted for the majority of the
remaining difference between the ‘‘high treatment, no reuse’’
experiment and the reference run. By 2100, wastewater reuse in
the reference run amounted to 1025 km3 yr�1 and averted the pol-
lution of 615 km3 yr�1 of blue water for irrigation, as well as
410 km3 yr�1 for domestic and industrial purposes. Since irrigation

water is untreatable and requires considerable dilution in ANEMI,
this difference in the volume of agricultural returnable water had
a large effect on water stress levels. Differences between the sim-
ulations in the total withdrawal volumes accounted for the
remaining gap in water stress levels.

Fig. 4 illustrates the effects of wastewater treatment and reuse
feedbacks on total wastewater volumes. The three solid lines show
the total volumes of wastewater generated in the reference run
and in the low and high treatment experiments. The dashed lines
show that the treated wastewater volume rose over time, the un-
treated volume decreased in the reference simulation and the total
volume of wastewater decreased through reuse. The untreated vol-
ume in the ‘‘high treatment, no reuse’’ experiment behaved analo-
gously to the reference untreated volume but decreased less over
time since wastewater was not reused. The total wastewater reuse
in the reference run eventually matched the total treated wastewa-
ter volume; this treatment to reuse relationship can be changed
easily in light of new information. Finally, the two treated-waste-
water curves show the effects of water stress feedbacks on treat-
ment, as described above: the wastewater treatment volume in
the high treatment case clearly rose faster than in the reference
run, because of both its higher water stress values and its higher
wastewater volume.

4.3.3.3. Broader effects of the wastewater treatment and reuse
policies. Other feedbacks also influence model behavior. As stated
above, scarcer water resources in the blue water experiments re-
duced the population growth rate from its reference behavior.
These lower populations then caused economic output to diverge,
from $97.46 � 1012 yr�1 in 2100 for ‘‘low treatment, no reuse’’ up
to $102.8 � 1012 yr�1 for the reference run (see Table 4). Lower
population also led to less surface temperature change and lower
atmospheric CO2 concentrations in the two experiments, because
fewer people coupled with less economic activity caused less envi-
ronmental change.

Many variables exhibited less change than population, but their
variation remains important from a water resources perspective.
For example, if the difference in industrial withdrawals between
the simulations depended only on wastewater reuse, the experi-
mental withdrawals would be 303 km3 yr�1 higher than the refer-
ence value. Yet, the actual differences were found to be 298 and
300 km3 yr�1 higher for the low and high treatment experiments
– differences that resulted from a feedback with the economic sec-
tor of the model. The industrial structural water intensity [5] de-
pends on GDP per capita, which was actually greater for the two
experiments than for the reference run; the macro-economic So-
low growth model explains this effect [27]. As a result, the indus-
trial sector required slightly less water for its purposes in the two
experiments than in the reference simulation and so higher water
stress led indirectly to slightly higher industrial efficiency.

Fig. 3. A comparison of water stress values in the reference simulation and experiments one and two.
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Surface water availability also varied between the reference run
and the two experiments since climate change drove differences in
the hydrological cycle. Specifically, because of the small differences
in final global average surface temperatures from Table 4 of
1.80 �C, 1.81 �C and 1.83 �C in the low and high treatment experi-
ments and the reference simulation, respectively, the associated
available surface flows in 2100 were 42,418, 42,427 and
42,437 km3 yr�1. In other words, in ANEMI neither the effective
withdrawals nor the base hydrological conditions remained the
same in each simulation because of both the water-sector and
broader-model feedbacks.

4.3.4. Blue and green water experiments: irrigation, dietary changes,
and dilution factors

ANEMI simulates blue and green water feedbacks associated
with agriculture; the top lines of Table 5 compare the direct effects
of the experiments. In the ‘‘irrigation expansion’’ experiment, an
increase in the l parameter of Eq. (15) produced significant in-
creases in the irrigation area. The ‘‘more animals’’ experiment pre-
scribed greater animal product consumption at levels from
Bouwman et al. [18].

The direct effects of more irrigation in the ‘‘irrigation expan-
sion’’ experiment included greatly-increased blue water use over
the course of the simulation, with a withdrawal almost
1500 km3 yr�1 higher in experiment three than in the reference
simulation. However, greater irrigation also reduced green water
consumption and the agricultural area by 2100. Specifically, as
the irrigated area rose to 584 Mha, the rainfed area fell to 890
Mha from its reference value of 1261 Mha because of irrigation’s
higher productivity. Greater blue water consumption also reduced
green water consumption by 1564 km3 yr�1. In the ‘‘more animals’’
experiment, greater consumption of animal products drove the
conversion of 115 Mha, or 7%, more natural land to cropland, and
without substantial increases in pastoral productivity, required
approximately 1350 Mha more pasture land than in the reference
run. Further, greater animal product consumption required an
additional 1549 km3 yr�1 green water consumption to grow
6.3 Ecal, the equivalent of 1566 kcal cap�1 d�1, more agricultural
and pastoral energy in 2100. In the reference simulation, agricul-
tural energy production for all crop, fodder and grazing purposes
is already 25 Ecal higher in 2100 than in 2000.

More blue water use and greater animal-product consumption
had broader feedback effects as well, as shown in Table 5. Water
stress values rose significantly from the reference value of 0.29–

0.37 and 0.31 because of higher blue-water and green-water dilu-
tion requirements, respectively – see Eq. (12c). Thus, in the refer-
ence simulation, the effective blue water withdrawal was
4548 km3 yr�1 as compared with 8467 km3 yr�1 for ‘‘irrigation
expansion’’, while the reference and ‘‘more animals’’ green-water
dilution requirements for rainfed cropland and pasture were
5794 and 1810, and 6196 and 2282 km3 yr�1, respectively.

The higher blue-water withdrawal and ‘‘green returnable flow’’
and their associated dilution requirements had far-reaching conse-
quences. As the irrigated area grew in ‘‘irrigation expansion’’ and
drove higher water stress values, the rate of population growth fell
in comparison with the reference run results. Furthermore, higher
water stress values meant that the maximum domestic and indus-
trial treatment fractions were reached earlier – see Eq. (14) – in the
‘‘irrigation expansion’’ experiment than in the reference simula-
tion: in 2041 versus 2044, and in 2068 versus 2075, respectively.
In the case of wastewater reuse, the respective maximum reuse
fractions were reached in 2070 and 2078. In other words, higher
water stress in ‘‘irrigation expansion’’ drove the earlier implemen-
tation of wastewater treatment and reuse programs but water pol-
lution was already dealt with to the extent possible by 2070,
making no further treatment or reuse possible. Water stress con-
tinued to rise as a result.

Higher water stress values in the ‘‘more animals’’ experiment
had the same effects but to a lesser degree because of the lower
green water dilution requirement. However, the water stress equa-
tion is quite sensitive to the green-water dilution factors used.
Fig. 5 shows the effects of different values on water stress and
the corresponding values of the standard water stress definition
from Eq. (11), which omits water quality considerations. Five addi-
tional simulations, called experiments 5-1, 5-2 and 5-3 use crop-
land and pasture runoff-dilution factors of 0.5 and 0.05, 1.5 and
0.15, and 2.0 and 0.2, respectively, while ‘‘standard water stress’’
shows the value from Eq. (11), where availability is set to 37% of
the annual renewable volume. Experiment 5-4 makes the dilution
factor a function of crop yield – of the form d = c(Y/Y0), where c is a
constant set to 0.5 and 0.05 for cropland and pasture, respectively,
and Y and Y0 are the current and initial yields – to represent the ef-
fects of intensifying agricultural production on water resources.

The ‘‘irrigation expansion’’ and ‘‘more animals’’ experiments
highlight important trade-offs in global agriculture. Since irrigated
agriculture currently occupies about 17% of all agricultural land
[91] and supplies roughly 40% of the world’s food [32], the expan-
sion of irrigation would seem a sound approach for reducing world

Fig. 4. Total wastewater, wastewater treatment, and wastewater reuse volumes (km3 yr�1).
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hunger, and possibly even for reducing the human environmental
footprint. However, the results of ‘‘irrigation expansion’’ show that
the polluting effects of irrigation may outweigh its food-produc-
tion benefits. In the ‘‘more animals’’ experiment, a greater fraction
of animal products in the human diet increased the required har-
vested and pasture areas, green water consumption and water pol-
lution levels. Clearly, dilution water volumes can strongly
influence the calculated water stress level, but only a few studies
[91,94,22,26] have attempted to quantify dilution requirements
at any scale. Since real-world dilution requirements remain uncer-
tain and model results are sensitive to the selected values, the re-
sults of experiments one to four should be considered primarily in
terms of their qualitative rather than quantitative behaviors. A
greater number of watershed and river basin scale studies that
investigate the connections between crop yields, soil management
and fertilizer application techniques, and nutrient and pesticide

concentrations in surface runoff from both irrigation projects and
rainfed agriculture would help in this regard.

5. Conclusions

Water resources systems are particularly difficult to model at a
global level because of the number of different real-world systems
to which they are connected. Furthermore, their components
change over time in generally unpredictable fashions that have his-
torically given rise to inaccurate water use projections, for example
[46]. These inaccuracies arise because population change, eco-
nomic growth, technological progress, land-use change, precipita-
tion and runoff levels, surface temperature change and a great
many more factors are related to water resources systems, and
they all interact through feedbacks in complex, nonlinear ways
that confound traditional modeling approaches. In most global

Table 5
Blue and green water experimental results.

Key variable 2000 2010 2025 2050 2075 2100

Irrigated area (Mha)
� Reference 263 279 305 337 363 392
� Irrigation expansion 263 296 354 433 503 584
� More animals 263 279 305 337 363 392

Dietary fraction of animal products
� Reference 0.167 0.173 0.176 0.183 0.189 0.195
� Irrigation expansion 0.167 0.173 0.176 0.183 0.189 0.195
� More animals 0.167 0.182 0.233 0.250 0.250 0.250

Population (109 people)
� Reference 6.14 6.94 8.10 9.82 11.28 12.50
� Irrigation expansion 6.14 6.94 8.09 9.76 11.10 12.16
� More animals 6.14 6.94 8.09 9.78 11.16 12.29

Blue water withdrawals (km3 yr�1)
� Reference 3894 4130 4346 4406 4258 4372
� Irrigation expansion 3894 4294 4789 5172 5353 5864
� More animals 3894 4130 4342 4375 4221 4366

Green water consumption (km3 yr�1)
� Reference 4730 5807 7184 9570 11,862 14,051
� Irrigation expansion 4730 5689 6853 8912 10,817 12,487
� More animals 4730 5972 8330 11,204 13,511 15,600

Harvested area (Mha)
� Reference 1288 1340 1360 1404 1490 1653
� Irrigation expansion 1288 1328 1325 1330 1371 1473
� More animals 1288 1362 1491 1557 1624 1768

Water stress (–)
� Reference 0.354 0.359 0.351 0.309 0.276 0.286
� Irrigation expansion 0.354 0.369 0.375 0.349 0.335 0.366
� More animals 0.354 0.363 0.372 0.332 0.297 0.308

Fig. 5. Effects of changes in dilution requirements on water stress.
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change fields, insights into comparably large-scale, complex feed-
back-based systems have come through the integrated assessment
modeling approach.

Comprehensive, feedback-based modeling approaches towards
water resources policy development, although uncommon [94],
are desirable for several reasons. They represent water resources
systems realistically within their broader context [109], clarify
cause-and-effect relationships and test important assumptions.
Most importantly, since the society-biosphere-climate system is
characterized by interdependent, self-sustaining and dynamic pro-
cesses, rather than by static, stimulus–response relationships [81],
a greater understanding of its behavior will come from a modeling
approach that includes these characteristics [93].

Of course, recognition of the importance of feedback has driven
the development of global hydrological models like WaterGAP2
[5], WBM [108], Macro-PDM [10] and H08 [49], vegetation and
agricultural models like LPJmL [86], GCWM [92] and WATERSIM
[30], and IA models like WorldWater [94] and TARGETS [53]. How-
ever, ANEMI differs from most other global-scale hydrological and
water resources models in several important ways. It incorporates
dynamic, interdependent representations of both socio-economic
and natural systems, represents systemic feedbacks explicitly, in-
cludes endogenous representations of population, economic
growth, global surface temperature and the carbon cycle, and fo-
cuses on connections between water quantity, water quality and
natural surface flow. The model has clear limitations, including
its global resolution and annual timescale, and would benefit from
changes to the population sector and to land-use – such modifica-
tions are planned for future versions of the model [29]. However,
its global scale and concentration on feedback effects provide a
new approach to understanding the causes and effects of a ‘‘global
crisis’’ [57], while model simulations can inform existing region-
ally-focused approaches.

The five water resources experiments examined in this paper
showed several benefits of a feedback-based modeling approach.
Specifically, a comparison of the reference run with the low and
high treatment experiments demonstrated the water resources-
and broader benefits of wastewater treatment and reuse programs,
while the ‘‘irrigation expansion’’ and ‘‘more animals’’ experiments
showed the blue and green water effects of an expansion of irriga-
tion and of shifts toward greater consumption of animal products.
The additional dilution sensitivity simulations, experiments 5-1, 5-
2, 5-3 and 5-4, investigated the effects of changes in the dilution
factors for runoff from rainfed agricultural land. The methodologi-
cal approach used, feedback tracing, followed cause-and-effect
relationships from one sector to another through the model, and
improved insight into the behavior of both the modeled and real-
world systems.

In the case of ‘‘low treatment, no reuse’’ and ‘‘high treatment, no
reuse’’, feedback tracing showed that water quality problems re-
lated to limited wastewater treatment and reuse could cause major
water scarcity, which could then affect the broader socio-economic
system with consequences even for the global population. The ref-
erence simulation, in contrast, illustrated the considerable benefits
of implementing extensive wastewater treatment and reuse pro-
grams. The ‘‘irrigation expansion’’ experiment suggested that irri-
gation schemes have significant beneficial effects, but that their
impacts on water quality and on broader socio-economic systems
must also be considered. The ‘‘more animals’’ experiment showed
that greater consumption of animal products not only affects the
global agricultural area, but also water resources systems, and
demonstrated the sensitivity and value of a water stress definition
that incorporates water quality as well as water quantity. Finally,
the additional dilution sensitivity simulations, experiments 5-1,
5-2, 5-3 and 5-4, demonstrated how relatively small changes in
the dilution factor can have large effects on the water stress level.

Together, these experiments clearly showed that feedbacks have
important effects – both expected and unexpected – on modeled-
and real-world behavior.

Decisions as to appropriate wastewater treatment and reuse
levels, expansions in irrigated agriculture and shifts in dietary
composition in reality involve short- and long-term socio-eco-
nomic trade-offs, since the degree of global change over the next
one hundred years is uncertain and its effects on the global econ-
omy are unclear, as are the feedbacks that connect them. Manage-
ment strategies can therefore be tested in the model for their direct
and indirect effects, while model sensitivities can suggest areas for
further study. When surprises occur, they are useful: researchers
learn something new by tracing the causal relationships that led
to the result. Furthermore, in the case that the effects are unlikely,
or even possibly wrong, a feedback-based model can help to reveal
the shortcomings in the current level of understanding that created
the model component in question, and then allow a test of assump-
tions. ANEMI serves as an example of the kind of learning tools
available, and the analyses described above demonstrate its value
in improving understanding of the society-biosphere-climate feed-
backs that determine the whole system’s evolution.
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